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Abstract-Discrete/Continuous (D/C) control theory is a
new generalized theory of discrete-time control that expands
the concept of conventional (exact) discrete-time control to
create a framework for design and implementation of discrete-
time control systems that include a continuous-time command
function generator so that actuator commands need not be
constant between control decisions, but can be more generally
defined and implemented as functions that vary with time
across sample period. Because the plant/control system
construct contains two linear subsystems arranged in tandem,
a novel “dual-kernel counter-flow” convolution integral
appears in the formulation. As part of the D/C system design
and implementation process, numerical evaluation of that
integral over the sample period is required. Three
fundamentally different evaluation methods and associated
algorithms are derived for the constant-coefficient case.
Numerical results are matched against three available
examples that have closed-form solutions.

I. INTRODUCTION

As introduced in [1], Discrete/Continuous (D/C) control
theory defines a new generalized approach to design of
discrete-time control systems that, unlike traditional
discrete-time control, does not restrict actuator commands to
be constant over the control decision interval , but allows
them to vary continuously with time, in a “smart” manner,
across each sample period between decisions. Because the
system construct contains two linear subsystems that
operate in tandem, a novel dual-kernel counter-flow matric
convolution integral naturally arises in the formulation that,
in its most general form, is a matrix defined by

D)= [, 6,78, (OC, @, @6)ldr , ()
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where (¢,,t,) are times associated with extremes of the
sample period,(®,,P )are state transition matrices
associated with the plant and control system, B ,(¢)is the
plant input distribution matrix, C_(#)is the control system

output selection matrix, and the definition and form have
been taken from [1].

Specializing (1) to the constant coefficient case yields
T
—_ _ Ap(T-1) Ao (1)
D(T)_J'e P p Ce*Wdr
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where the constants 4 and B are associated with the
standard state-variables representation of linear system
dynamics as indicated by

x=Ax+ Bu 3
y=Cx, %

@

and

the subscripts p and ¢, as before, refer to “plant” and
“control”, and T is the time between control decisions
(sample period). A block diagram representation of the
system theoretical construct is shown in Fig. 1.

Design and computation of the control gain-matrix
K shown in Fig. 1 requires evaluation of the convolution
integral D [1, 2]. The rest of this paper is devoted to
development of three specific approaches to numerical
evaluation of D . The first method relies on series
expansion and truncation for the individual plant and
control system state transition matrices, and also makes use
of the state transition matrices to partition the sample
period so that the length of time for which the series
expansions must be valid can be less than the sample
period. A second method, which can be described as a
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Fig. 1. Diagram of Plant/Control System



mapping-matrix approach, requires simulation of the system
to generate plant time responses across the sample period as
a function of control system initial conditions. The
simulation is run as many times as there are control system
states. The third method relies on a single series expansion
and truncation for the total system state transition matrix
followed by extraction of the convolution as a partitioned
block of the matrix result. While this method involves
indirect computation of D from the solution of the total
system matric differential equation, Johnson [3] describes a
potential fourth approach that involves identification of a
matric differential equation whose solution directly
produces D .

II. DEVELOPMENT OF METHODS AND ALGORITHMS

A. Method 1: Sample-Period-Partitioned Double Series
Expansion

The first method and algorithm are derived by working
directly with the definition of D given in (2). Both
exponential functions are replaced with their infinite series
counterparts so that
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Exchanging integration with summation, a single element of
the resulting (double) summation is expressed by,
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where d,, is any element of D . Now the integration can
be performed analytically, and the corresponding general
element of D is given by
n 4n m
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Finally, the integral D can be expressed as

_ M N  \"A"B C.A™ Tm+n+1
D(T)=3APTZZ( ) p-p ~clc , (8)
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where the integers N and M represent the arbitrarily large
but finite number of terms included in the series plant and
@ of the control system. expansions for the state transition

matrices @, of the

Equation (8) potentially represents an algebraic
definition of requirements for the detailed design of a
computer algorithm, which can be implemented in a

language such as Fortran, C, or Matlab®, to numerically

evaluate D . However, for reasons of practical experience,
the algorithm derivation will be taken through another
major step. The time between control decisions 7 will be
partitioned into an arbitrary number of sub-intervals g, and

the convolution integral D(T) will be expressed as a
function of D(T/q) and the state transition matrices
®D,(T/q)and D, (T/q). Because the final symbolic

expression for D(T) will explicitly include both the
number of subintervals ¢ and the number of terms N and
M used in the exponential series expansions, the algorithm
will become more tunable for specific circumstances and
much more capable of handling long sample periods.
Choosing values for the tuning parameters N, M, and ¢ is
loosely analogous to choosing order in time and length of
time-step associated with numerical integration of
differential equations. This form of the algorithm will be
referred to as sample-period-partitioned (SPP).

To facilitate derivation of the SPP algorithm, a standard
compact discrete-time control notation is employed and
explained below. For constant input u# over the sample
period T, often referred to as sample-and-hold or zero-
order-hold (ZOH), the exact discrete-time equivalent to
the continuous-time system represented by (3) is

x(k +1) = A(T)x(k) + B(T)u(k) ©)
for k=0,1,2,---, where 4 is the state-transition matrix
AT)=e"T, (10)

and B is the discrete input distribution matrix
T
B(T)= IeA(T")Bdr . an
0

The tacit assumption of constant sample period, T(k)=T ,

in (9-11) is a notational convenience that affords no
significant loss of generality.

As developed in [1], the D/C generalization of (9) for
the plant is

x,(k+1)=4,(T)x,(k)+ D(M)x,(k), (12)

where the value of x,(k) is updated from the D/C control
computations at each sample-time ¢, =kT based on
x,(k)=x,(kT) and the D/C control gains associated with
a particular design. The continuous variation of the D/C
control system state as it is propagated across the sample
period is given by

x,(t)= e x (kT); kT<t<(k+DT. (13)



In the more compact notation of (12), an evaluation of
the control state at the end of the sample period, prior to any
potential alteration (update) by the D/C control logic, is
given by

x,(k+1)= 4,(T)x, (k). (14)

Equations (12) and (14) form a basis from which the
sample period can be partitioned. To this end, an integer ¢
is defined such that it represents the number of sample
period sub-intervals resulting from the partitioning. Then
(12) applied to the first sub-interval becomes

x,(k+1/q)= AT/ g, () + DT/ g)x, (k).  (15)
Similarly, (14) becomes
x,(k+1/q)= 4T/ q)x, (k). (16)
Continuing forward in time,
x,(k+2/q)=A4,(T/q)x,(k+1/q)
+D(T/g)x,(k+1/g). (1D

Substituting (15) and (16) into (17) and rearranging,
x,(k+2/q)= Aj (T/q)x,(k)

~ _ — ~ (18)
+[4,(T/1q)D(T/q)+D(T/q)4, (T /g, (k),
where, in the interest of clarity, it is noted that
A(T)= 4T/ g)=[e"""T", (19)

for both the plant and control systems. Continuing a similar
algebraic process,

x,(k+3/q)= AT/ q)x, (k) +
[42(T/q)D(T/q)+ 4,(T/)D(T /) 4,(T/q) @0

+D(T /1 q) AT 1 9)Ix, k),
and

x,(k+4/q)= AT/ q)x,(k)+
[43(T/q)D(T/q)+AX(T/q)D(T/q)A(T/q)
+A4,(T/q)D(T/q)4X(T/q)+ @1)
D(T1q)AX(T1 ), (k).
Then, by induction

x, (k+1)= 49T/ g)x, (k) +
(22)

D 47 (T 19)IDT 1 )47 (T 1)), (k).

n=1

Finally, by comparison with (12),

D)= 47T IPIDT I DATT/9),  (23)

n=1

where, from (8)

D(T/q)=
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and it should be pointed out that the notation (7/g) on the
right-hand side of (24) simply indicates an algebraic
parameter grouping, and is different from but consistent
with the functional notation (77/g) used previously and on
the left-hand side of (24) . The complete sample-period
partitioned algorithm, defined by (23) and (24), can now be
applied over a very long control system decision-making
interval (large 7) because the computational process is
explicitly tunable in terms of both the order M and N of

the series expansions and the associated time interval 7 /q .

B. Method 2: Mapping-Matrix Construction by Continuous
System Simulation

The role of D in a discrete-continuous control system
is to map the contribution of current states of the control
system across the control decision interval (sample period)
to future states of the plant. Thus, responses of a
continuous model of the plant, driven by output from the
(continuous) function generator portion of the D/C control
system, can be repetitively propagated across the sample
period, by dynamic simulation, to generate data from
which D can be constructed. A block diagram of the
simulation construct is shown in Fig. 2.

For an n-dimensional plant and an m -dimensional

control system, the dimension of Dis nxm, and m

simulation runs are required to construct D . Because
absolute scale is of no theoretical concern for a linear
system, the columns of an m x m identity matrix can be
used to define an appropriate m -dimensional initial state
vector for the function generator for each of the m
simulation runs. Initial values of the plant states are set to
zero so that the contribution to plant response from the
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Fig. 2. Diagram of Continuous Simulation



function generator alone is evaluated. Each simulation run
produces final values for nelements of the plant state

vector, and D can be constructed from the resulting data
set. The basic mathematical relationship supporting the
computational process is

x,(T) = D(T)x,(0). (25)
Then,
5(man) (T ) =

[, T) | 53(T) | -~ @9

X (T oy -

Because the initial control system states are the columns of

an m-dimensional identity matrix,
the convolution integral is given by
[, (T) 1 X5(T) |+ 1 %5 (T)] ey =
— m 27
Bl M O) | 520) -+ 22 OV gy - &

where the x},(T) are the n-dimensional plant state vectors

at time ¢=T7 which have been propagated by the i*

execution of the continuous system dynamic simulation of

Fig. 2 with initial conditions x5(0) and x.(0) given by

[x,(0) { x3(0) | ---
and

[x30) 1 x2(0) 1+ 1 X7 OV immy = Limamy - @9

Oy =0, @8)

C. Method 3: Sample-Period-Partitioned Single Series
Expansion

A combined state-variable representation of the plant
and D/C control system function generator depicted in Fig.
2 can be represented by

X=4,X, (30)
where
o F A 31)
and e J
- |:f1£_i_1_9 £_C£—| _ (32
sys O : Ac J
Then, the exact discrete-time representation is
X((k+1)T) = 4,, X (kT), (33)
where N
=" (34)

Sys

Then, by inspection, comparisons, and substitutions among
(12) and (30-34), it becomes clear that

, (35

where D is as defined by (2). Then, an obvious method
for computing D is to compute A using any of several
known standard methods [4], and extract D from the
partitioned result.

IV. IMPLEMENTATION

Algorithm functionality for Method 1 is defined by (23)
and (24). Using this definition as a guide, the process was
programmed directly using the core capability of Matlab®.

For Method 2, a combination of Matlab® and
Simulink® was used to build the simulation described in
Fig. 2, manage its execution, store results, and perform
subsequent computations as indicated by (27)(29).

Algorithm functionality for Method 3 is defined by
(32), (34), and (35), and was implemented in Matlab®.
However, two different mathematical processes were used

to compute the state transition matrix A defined in (35).
The first is an SPP series-expansion approach derived from

truncating a series expansion of A4 analogous to that
shown in (19), while the second uses the Matlab® library
function expm ().

V. FUNCTIONAL VERIFICATION

Initial verification was accomplished by using all three
methods to evaluate D for three specific cases whose
closed-form solutions are available [5] and [6]. With
reasonably proper selection of algorithm parameters, all
methods appear to function correctly. Algorithm
parameters include number of terms retained in series
expansions, number of sample-period partitions, and
maximum allowable integration step size in the case of
simulation. The closed-form test cases are outlined below.

A. Case I: Harmonic Oscillator Plant with Constant-Only
D/C Control Basis Functions (ZOH control).

This system consists of an un-damped second-order
oscillatory plant and a control system whose function
generator is only capable of producing actuator commands
that are constant across the sample period. This case is
equivalent to the ZOH (Zero Order Hold) associated with
traditional discrete-time control. The matrices that define
this example system are given in [5] as

([ o 1170
{4p,Bp} = ﬁ|:_ a):p 0| ’|:1|J| (36)



and

4,

Cc} :{0’1}a

is the plant natural frequency. The closed-form

€y

where @,
(reference) expression for D in this case is [5]
E [1 cos(w, T)]—|

a),,p sin(@,,T') h

D,

ref (38

Relative computational accuracy can be measured as an
error norm defined by

HD D

ref
.

error = 39)

where ||( )|| can be any suitable matrix norm, and was

evaluated using the “largest singular value” (default) option
associated with the Matlab® function norm(). Algorithm

error results, along with pertinent parameter values, are
shown in Table I.

B. Case II: Harmonic Oscillator Plant with Linear-in- Time
(LiT) Control Basis Functions

This system, like Case I, consists of an un-damped
second-order oscillatory plant as described by (35), but the
control system function generator is capable of producing
LiT actuator commands (constant plus ramp) across the
sample period. The function generator in this example is
defined by [6]

K
A,C 1 0 40
{4.,C}= ﬂ 0 o J[ 1 (40)
and the closed-form expression for D from [6] is
B [1 cos@,,T)] @;2[w,T-sin@, D] .
| o, sin@,, 1) o, [l—cos@in)] J

Computational accuracy is measured according to (39);
algorithm parameters and error results are shown in Table
1L

C. Case III: Double Integrator Plant with Three-State
Control function Generator.
This system consists of a double integrator plant,

defined by
[[o 1] [01|
b 2 = ¢l s (42)
Ui =flo ol

and a control function generator defined by

{ 0 1 0] |]
{10 0 1 0 0]¢,
10 -, O |J
where @, is the frequency associated with the control
system basis functions. The closed-form expression for
D for this system is [6]
Do T?/2 o’ [o, T -sin(@,,T)]

T - [cos(@,, T)—1]

4,C}= “43)

(44)
w0 2T? 12+ 0 [cos(w, T)—1|-|

a)nc @, T —sin(w,.T)] ]

Computational accuracy is measured as before, and
algorithm parameters and error results are shown in Table
III.

TABLE I
FuncTioNAL TEST RESULTS, HARMONIC OSCILLATOR,
ZOH CoNTROL
Parameter
Set# 1 2 3 4
Plant _ _ _ _
Parameters Oy = 1 wp T 2 ®,, = 3 W, = 4
Control System T =001 T-01 T-1 7 =10
Parameters
Algorithm N=M=10N=M=4|N=M=10|N=M=10
Parameters™ g=1 g=10 =100 |q=1000
£ Double Series | 1.4427e-015 | 2.6623e-016 | 2.3457e-015 |3.6833e-015
‘g Simulation 1.4878e-015 | 7.8487e-017 | 2.3969e-013 |2.3633e-012
S S'"g'gpslf”es' 1.4413e-015 | 2.6512e-015 | 1.6612e-015 |2.3159¢-014
W = -
Single Series, | 4 45440.015 | 1.4062¢-016 | 7.7714e-016 |3.2019e-015
expm()
*Af applies only to dbl. series method; max. stepsize=5e-04 for all simulations.

TABLE II
FuncTioNAL TEST RESULTS, HARMONIC OSCILLATOR,
LiT CoNTROL
Parameter
Set# 1 2 3 4
Plant _ _ _ _
Parameters B =1 w 2 Doy = 3 Wop = 4
Control System _ _ _ _
Parameters =001 r=o0l r=1 r=10
Algorithm N=M=-6|N=M=7|N=M=10|N=AM=10
Parameters”® g=1 g=10 qg=100 | g=1000
Double Series | 1.4631e-015 | 1.3963e-016 | 1.7847e-015 | 4.8308e-015
El o
‘Za Simulation | 1.6502e-015 | 8.37376-017 | 1.8350e-013 | 7.9146e-013
5 | P19 2N | 1 4899e-015 | 1.39366-016 | 1.28280-015 | 7.7684e-015
LW [ Single Series, | 1 5488e-015 | 1.41726-016 | 5.96226-016 | 1.4203e-015
expmy()
" applies only to dbl. series method; max. stepsize=5e-04 for all simulations.




TABLE III
FuncTioNAL TEST RESULTS, DOUBLE INTRGRATOR,
3-STATE CONTROL

Parameter
Set# 1 2 3 4
Plant =1

(0]
Parameters e #e ne ne

Control System
Parameters

=001

Algorithim N=M=06|N

=M=7|N=M=10|N=M=10
Paramneters” g=1 g=10

g=100 [g=1500

Double Series | 1 4425e-015 | 1.3953¢-016 | 5.9627e-016 | 1.8218e-015

Simulation {1 6051e-015 | 9.8446e-017 | 3.7764e-014 | 2.0503e-013

Single Series,
gSPP 1.4617e-015 | 1.3939-016 | 6.5836e-016 | 8.6898e-015

Single Series,
expmi)
*A4 applies only to dbl. series method; max. stepsize=5e-04 for all simulations.

Error Norm

1.4530e-015 | 1.8313e-017 | 2.9141e-017 | 3.6425e-017

exp.
uses Matlab® library function P () to compute the

matrix exponential seems to produce the most accurate and
efficient process most of the time. As might be expected,
the simulation method is generally much less efficient than
the other methods, and its accuracy noticeably diminishes
as sample period increases. The double series expansion
method, while less efficient than the single series method,
appears to have significant potential for improvement at the
code level. It also provides a symbolic formula for direct
evaluation of the convolution in terms of plant, control
system, and algorithm tuning parameters. It is possible that
this feature could be of further use in D/C control
development. For the constant-coefficient and constant-
sample-period case, the computation is needed only once,
and can be done before-the-fact, so efficiency may be of no
real concern.

VI. SuMMARY AND CONCLUSIONS

Three fundamentally different methods for numerical
evaluation of the dual-kernal counter-flow convolution
integral associated with Discrete/ Continuous control theory
have been derived and implemented. The first method relies
on series expansion and truncation for the individual plant
and control system state transition matrices, and also makes
use of the state transition matrices to partition the sample
period so that the length of time for which the series
expansions must be valid can be much less than the sample
period. The second method requires simulation of the
system to generate plant time responses across the sample
period as a function of control system initial conditions. The
simulation is run as many times as there are control system
states. A third method relies on a single series expansion
and truncation for the total system state transition matrix
followed by extraction of the convolution as a partitioned
block of the matrix result. This method also incorporates

sample period partitioning. All three methods appear to
accomplish the objective in a functional sense; however,
they are significantly different, and are likely to have
different strengths and weaknesses with respect to
accuracy, efficiency and utility in future developments
associated with Discrete/ Continuous control.
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